Модуль зуба что такое

Шестерёнка – методика построения для любой CAD системы

Модуль зуба что такое
[attention type=red]

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

[/attention]

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

52

Про моделирование и печать шестеренок здесь написано достаточно. Однако, большинство статей предполагают использование спец. программ. Но, у каждого пользователя есть своя «любимая» программа для моделирования. Кроме того, не все хотят устанавливать и изучать дополнительный софт. Как же моделировать профиль зуба шестерни в программе, где не предусмотрено вычерчивание эвольвентного профиля? Очень просто! Но муторно… :)Нам понадобится любая программа, которая может работать с 2D графикой. Например, ваша любимая программа! Она работает с 3D? Значит и с 2D сможет! 😉 Строим профиль эвольвентного зуба без коррекции. Если кому-то захочется построить корригированный зуб, он может с этим разобраться самостоятельно. Информации полно – и в интернете, и в литературе. Если в вашей шестеренке зубьев больше 17-ти, то вам коррекция не понадобится. Если же зубьев 17 или меньше, то без коррекции возникает «утоньшение» ножки зуба, а при чрезмерной коррекции возникает заострение вершины зуба. Что выбрать? Решать вам.

1 шаг.

Определяем делительную окружность шестерни. Зачем это нужно? Чтобы определить межосевое расстояние. Т.е. где у вас будет располагаться одна шестерня, а где другая. Сложив диаметры делительных окружностей шестеренок и разделив сумму пополам, вы определите межосевое расстояние.

Чтобы определить диаметр делительной окружности нужно знать два параметра: модуль зуба и количество зубьев. Ну, с количеством зубьев – тут всем все понятно. Количеством зубьев на одной и другой шестерне определяется нужное нам передаточное отношение. Что такое модуль? Чтобы не связываться с числом «пи», инженеры придумали модуль.

🙂 Как вы знаете из курса школьной математики: D= 2 «Пи» R. Так вот, что касается шестеренок, там D = m* z, где D – это диаметр делительной окружности, m – модуль, z – количество зубьев. Модуль – величина, характеризующая размер зуба. Высота зуба равна 2,25 m.

Модуль принято выбирать из стандартного ряда величин: 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25; 32 (ГОСТ-9563). Можно ли придумать «свой» модуль? Конечно! Но ваша шестеренка будет нестандартная! 😉

2 шаг.

Чертим делительную окружность. У кого нет подходящей «проги», чертит на бумаге, фанере или металле! 🙂 От делительной окружности «откладываем» наружу на величину модуля (m) окружность вершин зубьев. Внутрь откладываем модуль и еще четверть модуля (1,25 m) – получаем окружность впадин зубьев. Четверть модуля дается на зазор между зубом другой шестерни и впадиной этой шестерни.

3 шаг:

Строим основную окружность. Основная окружность – это окружность, по которой «перекатывается» прямая линия, своим концом вычерчивая эвольвенту. Формула для расчета диаметра основной окружности очень простая: Db = D * cos a, где а – угол рейки 20 градусов. Эта формула нам не нужна! Все гораздо проще.

[attention type=yellow]

Строим прямую линию через любую точку делительной окружности. Удобнее взять самую высокую точку, на «12 часов». Тогда линия будет горизонтальная. Повернем эту линию на угол в 20 градусов против часовой стрелки. Можно ли повернуть на другой угол? Думаю, можно, но не нужно.

[/attention]

🙂 Кому интересно, ищем в литературе или интернете ответ на вопрос.

4 шаг:

Прямую линию, которую мы получили, будем поворачивать вокруг центра шестерни маленькими угловыми шагами.

Но, самое главное, при каждом повороте против часовой стрелки будем удлинять нашу линию на длину той дуги основной окружности, которую она прошла.

А при повороте по часовой стрелки наша линия будет укорачиваться на ту же величину. Длину дуги или мерим в программе, или считаем по формуле: Длина дуги = (Пи * Db * угол поворота (в градусах)) / 360

5 шаг

«Прокатываем» прямую линию по основной окружности с нужным угловым шагом. Получаем точки эвольвентного профиля. Чем точнее хотим строить эвольвенту, тем меньший угловой шаг выбираем.

К сожалению, в большинстве программ автоматического проектирования (CAD) не предусмотрено построение эвольвенты. Поэтому эвольвенту строим по точкам либо прямыми, либо дугами, либо сплайнами. При построении эвольвента заканчивается на основной окружности. Оставшуюся часть зуба до впадины можно построить дугой того же радиуса, который получается на трех последних точках. Для 3D печати я рисовал эвольвенту сплайнами. Для лазерной резки металла мне пришлось рисовать эвольвенту дугами. Для лазера нужно создать файл в формате dwg или dxf (для некоторых, почему-то, только dxf). «Понимает» лазер только прямые, дуги и окружности, сплайны не понимает. На лазере можно сделать только прямозубые шестерни.

6 шаг:

Делим окружность на такое количество частей, которое в 4 раза больше количества зубьев шестерни. Эвольвенту отзеркаливаем относительно оси зуба и копируем с поворотом нужное количество раз.

Чтобы получить шестерню в объеме, то задаем толщину и получаем прямозубую цилиндрическую шестерню:

Если нужна косозубая шестерня, то вводим наклон зубьев и получаем:

Для получения шевронной шестерни, нужно отзеркалить косозубую шестерню относительно нужной торцевой поверхности:

Как смоделировать коническую шестерню, придумайте сами. 🙂

К вопросу о точности шестеренок. Те шестеренки, которые я распечатал на 3D принтере, сначала вращались, издавая легкое поскрипывание. Прошло некоторое время, и звук прекратился. Шестеренки «притерлись». 🙂

После модернизации принтера, шестеренки не печатал. Возможно, сейчас они напечатаются более точно, и не будут скрипеть.

Для вакуумной машины смоделировал пару – «шестерня-рейка». Их вырезали на лазере:

Рейка будет перемещать прижимную рамку с материалом (листовой АБС) из области нагрева в область вакуумного формования. Рейка и шестерня еще не испытывались. Возможно, придется «дорабатывать напильником». На рейке и шестерне видны «волны» от лазера – слишком толстый металл. Они то и могут заклинить. А, может, разработается. 🙂 Время покажет! [attention type=red]

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

[/attention]

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

52

Sergey
Загрузка

16.03.2016

137352

254 [attention type=red]

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

[/attention]

Отписаться от уведомлений вы всегда сможете в профиле автора.

Подписаться

Всем привет. Сайт materialise недавно опубликовал статью, в которой рассказал про общедоступные базы 3D-моделей в сети. Я решил, что эта информация не…

Источник: https://3dtoday.ru/blogs/3drafter/cog-method-of-construction-for-any-cad-system/

Модуль зубьев зубчатого колеса

Модуль зуба что такое

Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня».

За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки.

Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.

Зубчатое колесо

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

Скачать ГОСТ 9563-60

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.

Для расчета этого параметра применяют следующие формулы:

m=t/π,

где t — шаг.

Параметры зубчатых колес

Модуль зубчатого колеса можно рассчитать и следующим образом:

m=h/2,25,

где h — высота зубца.

И, наконец,

m=De/(z+2),

где De — диаметр окружности выступов,а z — число зубьев.

Что же такое модуль шестерни?

это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Формула расчета параметров прямозубой передачи

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.

Расчет модуля зубчатого колеса

Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:

π×D=t×z,

проведя преобразование, получим:

D=(t /π)×z

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

t/π=m,

размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:

В=m×z;

выполнив преобразование, находим:

m=D / z.

Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным

De=d+2× h’,

где h’- высота головки.

Высоту головки приравнивают к m:

 h’=m.

Проведя математические преобразования с подстановкой, получим:

De=m×z+2m = m(z+2),

откуда вытекает:

m=De/(z+2).

Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:

Di=D-2h“,

где h“- высота ножки зубца.

Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

h’ = 1,25m.

Устройство зубчатого колеса

Выполнив подстановку в правой части равенства, имеем:

Di = m×z-2×1,25m = m×z-2,5m;

что соответствует формуле:

Di = m(z-2,5m).

Полная высота:

h = h’+h“,

и если выполнить подстановку, то получим:

h = 1m+1,25m=2,25m.

Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.

Следующий важный размер, толщину зубца s принимают приблизительно равной:

  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины

  • для отлитых зубцов: sв=πm-1,53m=1,61m:
  • для выполненных путем фрезерования- sв= πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Исходные данные и замеры

На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.

Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.

Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.

Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.

Результаты расчетов

Для более крупных потребуются измерения и вычисления.

Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:

m=De/(z+2)

Последовательность действий следующая:

  • измерить диаметр штангенциркулем;
  • сосчитать зубцы;
  • разделить диаметр на z+2;
  • округлить результат до ближайшего целого числа.

Зубец колеса и его параметры

Данный метод подходит как для прямозубых колес, так и для косозубых.

Расчет параметров колеса и шестерни косозубой передачи

Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.

Источник: https://stankiexpert.ru/tehnologii/modul-zubev-zubchatogo-kolesa.html

Что такое модуль шестерни?

Модуль зуба что такое

Global Hobby25 сентября 201921:28

Данная статья носит характер образовательный и вспомогательный для людей занимающихся моделизмом и творчеством в различных кружках или дома самостоятельно.

Статья не претендует на звание научного трактата и вся предоставленная в ней информация носит лишь ознакомительный характер для понимания и определения такой важной характеристики как “модуль шестерни”Ведущие и ведомые шестерни в коробках передач и редукторах для различных радиоуправляемых моделей имеют определенное количество зубьев с конкретным модулем и шагом (pitch).Модуль является самым главным параметром. Через него выражаются все остальные параметры. Он стандартизирован во всем мире и определяется из прочностного расчёта зубчатых передач.Для тех моделистов, которым покажется сложными все точные выкладки и расчеты достаточно будет в своей практике постройки различных моделей руководствоваться простыми правилами, которые будут звучать примерно так. Для любых шестеренчатых передач важно подбирать ведомые и ведущие шестерни с одинаковым модулем. При этом число зубьев в любой из подбираемых шестерен (ведомая или ведущая в шестеренчатой передаче) можно варьировать подбирая нужное соотношение мощности и оборотов, но характеристика “модуль шестерни” должна оставаться одинаковой для любых шестеренок входящих в непосредственное зацепление друг с другом. Проще говоря понятие модуль шестерни это международная стандартная характеристика обозначения формы зубца любой шестеренки (тут заложены и эвольвента и размеры по высоте и т.д.). Если модули шестерен совпадают, а количество зубьев и диаметры например различные, то можете быть уверены в том, что при правильной установке (зазоры, соосность и т.д.) эти две шестеренки будут работать правильно. Но если параметр модуля различный у шестерен участвующих в передаче, то как их не выставляй они все равно будут “выедать” одна другую и со временем шестеренчатая передача выйдет из строя.Производители радиоуправляемых моделей машин и бренды, выпускающие тюнинг и запчасти для автомоделей, часто (но не всегда) используют дюймовую маркировку ведущих и ведомых шестерен (32 Pitch, 48 Pitch, 64 Pitch). Это такие бренды как, LOSI, TRAXXAS, RRP, VENOM и др. В ней указывается количество зубьев на 1 дюйм диаметра.Например: шестерня с 32 pitch будет иметь 32 зуба на 1 дюйм диаметра, а шестерня с 64 pitch будет иметь 64 зуба на 1 дюйм диаметра. То есть, чем больше значение модуля, тем ближе зубья друг к другу

Различия между модулями для визуального сравнения вы можете оценить по следующей иллюстрации:

На фото представлены ведущие шестерни с одинаковым количеством зубьев 21, но разными модулями.

Самым ходовым модулем для радиоуправляемых автомоделей является модуль 48 Pitch.

В редукторах радиоуправляемых моделей самолетов, электрических мини вертолетах и квадрокоптерах ( мультикоптерах ) обычно используют шестерни с метрической маркировкой (0.3 Module, 0.4 Module, 0.5 Module, 1.0 Module и др.).

При метрической маркировке, чем больше модуль, тем крупнее зуб. Различия между метрическими модулями для визуального сравнения вы можете оценить по следующей иллюстрации:

Поэтому покупая и заказывая запчасти в магазинах или через интернет, всегда обращайте внимание не только на количество зубьев, но и на указанные в характеристиках товара значения модуля шестерни (pitch) или (module).

[attention type=green]

Эта величина модуля должна обязательно быть одинаковой у всех шестерен в зацеплении, а также обратите внимание на величину диаметра посадки шестерни на вал. При этом материалы, из которых изготовлены шестерни, могут быть абсолютно различными от пластика до высокопрочной стали.

[/attention]

На фото показан пример редуктора автомодели в сборе. Модуль ведущей шестерни (Pinion Gear) и ведомой шестерни (Spur Gear) – 48 Pitch.

На фото показан пример редуктора в сборе для радиоуправляемой модели самолета паркового класса. Модуль ведущей шестерни (Pinion Gear) и ведомой шестерни (Spur Gear) – 0.4 Module.

При покупке в магазинах радиоуправляемых моделей или на сайтах различных продавцов в интернете еще можно разобраться и все несколько раз перепроверить.

На фото представлены ведущие (сверху) и ведомые (ниже) шестерни разных фирм производителей в упаковках.

Буквой T обозначено общее количество зубьев на шестерне (от англ. Tooth – Зуб). Буквой P обозначено значение шага зубьев Pitch. Непосредственно значение модуля обозначено словом Module.

Причем Вам при покупке пары для имеющейся у вас шестерни необходимо помнить правило: Единый Pitch для пары шестерней или единый модуль это не важно.

Важно если вы подбираете пару для шестеренчатой передачи зная значение Pitch, то и продавцу задаете вопрос употребляя значение ( Pitch ), а если у вам известен модуль ( Module ), то и заказывать у продавца парную шестерню необходимо используя значение именно модуль шестерни — Module.

А вот как быть в том случае когда шестеренка уже требует замены или планового апгрейда (Upgrade) для увеличения скажем мощности. Или имеется обломок (часть шестерни) присланный, например, другом моделистом из другого региона России с просьбой достать точно такую же или “примерно такую”.

[attention type=yellow]

Для этих “сложных” случаев можно воспользоваться информацией приведенной ниже, чтобы точно определить нужный модуль шестерни перед покупкой ее в магазине или перед заказом через интернет из “забугорного” сайта. Для этой задачи необходимо вооружится необходимыми знаниями и точным измерительным инструментом (особенно если шестеренка маленькая).Итак, начнем понемногу.

[/attention]

Модуль зацепления (модуль шестерни) – это отношение делительного диаметра шестерни к числу зубьев, выраженное в миллиметрах. То есть модуль шестерни равен числу миллиметров диаметра приходящееся на один зуб.

m – модуль (обозначается в англоязычных магазинах на упаковочном пакетике как module)
d – делительный диаметр (диаметр, измеренный по половине высоты зуба)
z – число зубьев (в англоязычных магазинах обозначается буквой T фрезеровкой или литьем на самой шестеренке и, как правило, на упаковочном пакетике с товаром)
p – шаг зубьев (в англоязычных магазинах обозначается как pitch иногда как P на упаковочном пакетике с товаром)Например, если делительный диаметр d=120 мм, а число зубьев равно 60, то модуль будет равен 2 мм.Модуль так же является и показателем высоты самого зуба – она равна 2 x m.Например, если модуль шестерни равен 2 мм, то высота зуба будет равна 4 мм.

Надеемся эта информация поможет многим моделистам в определении, того какая именно шестеренка им необходима.

Источник: https://www.globalhobby.ru/articles/Pitch_Pinion_Gear/

Med-Dentall.Ru
Добавить комментарий